

Searching for a solution method for the Smart Waste Collection Routing Problem

<u>Ana Raquel de Aguiar</u>¹, Carolina Soares de Morais¹, Tânia Rodrigues Pereira Ramos ¹, Ana Paula Barbosa-Póvoa ¹

¹ CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

APDIO Congress 2019, Tomar - Portugal

© Aguiar et al. 2019

WSmartRoute Project

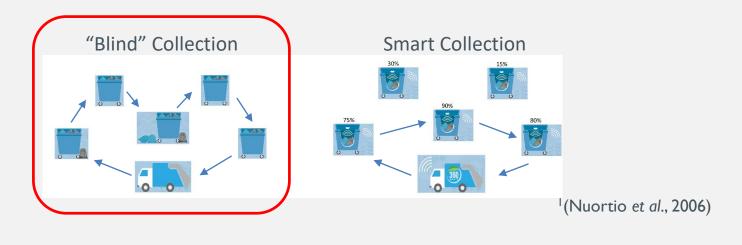
Aims to explore a new paradigm that relies on smart waste collection, where realtime data plays a central role in changing the way operations are managed today, moving from static to dynamic routes.

The tool to be developed will integrate technology with management concerns contributing to improve the companies' operations decision-making process.

http://wsmartroute.tecnico.ulisboa.pt/

Introduction The Smart Waste Collection Routing Problem Objectives Optimization-based Heuristic Approach Results for real-case instance Conclusions Future Work

Introduction



Amount of municipal solid waste is highly variable, and its accumulation is difficult to forecast¹: high uncertainty regarding bins' fill-levels.

As a result, Waste collection operations are particularly inefficient, characterized by high transportation costs and high pollutant emissions.

"Blind collection": static routes that visit all bins (some almost empty).

Introduction

Use of real-time information on the bins' fill-level (transmitted by volumetric sensors placed inside the bins) to define dynamic collection routes that maximize daily operational profit²;

Max PROFIT = revenues obtained from the recyclable waste collected transportation costs of collecting that waste

Maximize waste collected while minimizing distance travelled

²(Ramos et al., 2018)

Use of real-time information on the bins' fill-level (transmitted by volumetric sensors placed inside the bins) to define smart collection routes that maximize operational profit²;

Max PROFIT = revenues obtained from the recyclable waste collected transportation costs of collecting that waste

²(Ramos et al., 2018)

Decision: To select the waste bins to be visited (if any) and the optimal visiting sequence in each day *t* for each vehicle *k*, which will maximize the profit while satisfying the vehicles' fixed capacity and preventing bin overflows.

Decision: To select the waste bins to be visited (if any) and the optimal visiting sequence in each day *t* for each vehicle *k*, which will maximize the profit while satisfying the vehicles' fixed capacity and the bins' capacity

Defines when (in which day) the model should be run to prevent bin overflows.

Solution Approach: Heuristic + VRP with Profit (VRPP) model²:

Model is solved at day t, in the morning, after receiving sensors' information on the bins' fill-level, when at least H waste bins are expected to overflow (to comply with the defined service level).

²(Ramos et al., 2018)

Decision: To select the waste bins to be visited (if any) and the optimal visiting sequence in each day *t* for each vehicle *k*, which will maximize the profit while satisfying the vehicles' fixed capacity and the bins' capacity

Solution Approach: Heuristic + VRP with Profit (VRPP) model²:

KPI	Day 1	Day 7	Day 12	Day 18	Day 24	Day 25	Day 30	Total	Average
Profit (€)	261.0	131.2	154.1	143.6	131.6	-59.9	111.3	872.9	124.7
Weight (kg)	5158.4	2644.0	4019.7	3625.6	2874.1	1310.6	2833.5	22465.8	3209.4
Distance (km)	229.0	120.0	227.8	200.9	141.5	184.4	157.9	1261.4	180.2
Attended bins	138	77	151	134	105	95	94	794	113
Ratio (kg/km)	22.5	22.0	17.6	18.1	20.3	7.1	17.9	17.8	17.8
Gap	8.0%	11.0%	7.0%	15.3%	16.2%	58.6%	20.3%	-	-
Comp. Time (s)	14400	14400	14400	14400	14400	14400	14400	100800	14400
Vehicles used	2	2	2	2	2	2	2	14	2

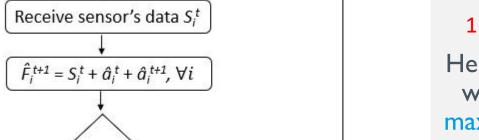
²(Ramos et al., 2018)

Problem: Low computational performance

9

To propose an optimization-based heuristic approach to solve the SWCRP, improving the solution performance of the VRPP mathematical model.

Computational experiments are performed to support the proposed method.


Optimization-based Heuristic

Decomposes the problem by reducing the set of waste bins to be inserted as input to the VRPP mathematical model

Cluster First - Route Second:

Selects a dynamic subset of waste bins to be considered, and then uses this dynamic set to feed the VRPP model that decides which waste bins are worth to be collected, considering their fill-levels and locations.

no

t = t + 1

Input

t = 1

 $\exists i: \hat{F}_i^{t+1} \ge 1?$

1)

 $L \subseteq I = \{i : S_i^t \ge M\}$

Using L solve VRPP

yes

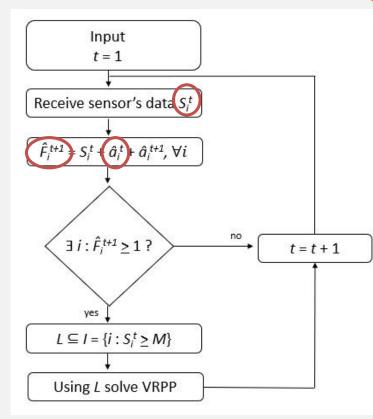
Optimization-based Heuristic

VRPP model is combined with two heuristics:

1) Waste bins are visited as late as possible

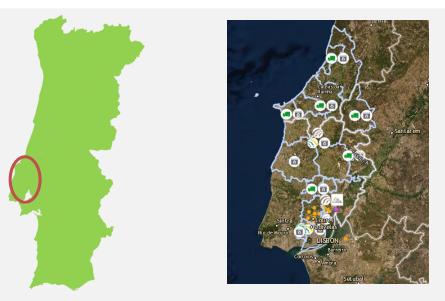
Heuristic procedure that defines when (in which day) the model should be run to maximize the profit within a time horizon;

2) Cluster First - Route Second


Heuristic rule that selects as a dynamic set of waste bins to be considered as an input for the VRPP model only those bins that have fill-levels higher than a defined threshold M- Sensitive analysis

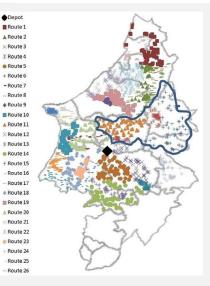
2)

Optimization-based Heuristic



 \hat{F}_i^{t+1} : estimate of the waste bins' fill-level at the end of day t+1

At day t, if there are waste bins about to overflow at t+1, then the waste bins for which the fill level S_{it} is higher than M are selected and, for those bins the model is solved and the routes are defined; if not, the next iteration is set to be carried out on the next day (t = t+1).



Case-study from a portuguese company responsible for the recyclable waste collection at 14 municipalities in Portugal;

Recyclable materials: glass, paper/cardboard and plastic/metal;

Paper/cardboard: 26 different static routes performed periodically.

Routes number 6, 11 and 13 226 bins 3^{rd} January - 2^{nd} February (T = 30 days)

Route 6 (68 bins): performed 2 times Route 11 (74 bins): performed 3 times Route 13 (84 bins): performed 5 times

Case-study from a portuguese company responsible for the recyclable waste collection at 14 municipalities in Portugal;

Recyclable materials: glass, paper/cardboard and plastic/metal;

Paper/cardboard: 26 different static routes perforn	ned periodically.
---	-------------------

Date	03/01	09/01	10/01	10/01	17/01	21/01	24/01	24/01	01/02	01/02		
Route	Route 13	Route 11	Route 6	Route 13	Route 13	Route 11	Route 6	Route 13	Route 11	Route 13		
KPI	Day 1	Day 7	Day 8	Day 8.	Day 15	Day 19	Day 22	Day 22.	Day 30	Day 30.	Total	Average
Profit (€)	117.5	94.0	-73.2	112.1	125.5	74.9	-77.1	81.7	73.5	107.6	636.3	63.6
Weight (kg)	2471.8	2342.7	1420.4	2564.1	2693.2	2250.5	1512.6	2195.1	2213.6	2490.3	22154.3	2215.4
Distance <mark>(</mark> km)	117.3	128.6	208.2	131.5	130.4	138.9	220.8	126.9	136.8	129.0	1468.4	146.8
Attended bins	84	74	68	84	84	74	68	84	74	84	778	78
Empty visited bins	6	17	26	7	7	2	1	7	2	6	81	8
Ratio (kg/km)	21.1	18.2	6.8	19.5	20.7	16.2	6.9	17.3	16.2	19.3	15.1	15.1
Vehicles used	1	1	1	1	1	1	1	1	1	1	10	1
Vehicles usage rate (%)	61.8	58.6	35.5	64.1	67.3	56.3	37.8	54.9	55.3	62.3	-	55.4

Optimization-based heuristic

			M = 0%	6								M = 109	%				
KPI	Day 1	Day 6	Day 13	Day 20	Day 25	Day 30	Total	Average	KPI	Day 1	Day 6	Day 13	Day 19	Day 26	Day 29	Total	Average
Profit (€)	253.1	186.9	224.4	223.9	147.9	106.7	1142.8	190.5	Profit (€)	253.9	187.4	219.2	181.6	195.4	38.8	1076.3	179.4
Weight (kg)	3999.6	3990.5	3953.6	3998.6	3781.5	2865.3	22589.2	3764.9	Weight (kg)	3991.7	3968.0	3994.6	3994.6	3818.2	2490.9	22258.0	3709.7
Distance (km)	126.8	192.2	151.2	155.9	211.3	165.5	1002.8	167.1	Distance (km)	125.3	189.5	160.3	197.8	167.2	197.8	1037.9	173.0
Attended bins	98	118	121	119	136	97	689	115	Attended bins	88	112	119	140	111	113	683	114
L	226	226	226	226	226	226	1356	226	L	124	121	154	165	158	131	853	142
Ratio (kg/km)	31.5	20.8	26.2	25.6	17.9	17.3	22.5	22.5	Ratio (kg/km)	31.9	20.9	24.9	20.2	22.8	12.6	21.4	21.4
Gap (%)	2.8	7.3	6.3	9.4	13.4	10.6	-	-	Gap (%)	0.0	2.6	5.8	7.8	5.9	27.9	-	-
Computational time (s)	16201.2	16203.7	16200.4	16201.1	16204.4	16203.2	97213.9	16202.3	Computational time (s)	3275.0	16205.3	16201.2	16203.1	16202.2	16202.6	84289.3	14048.2
Vehicles used	1	1	1	1	1	1	6	1	Vehicles used	1	1	1	1	1	1	6	1
Vehicle Usage Rate (%)	99.99%	99.76%	98.84%	99.97%	94.54%	71.63%	-	94.12%	Vehicle usage rate (%)	99.79%	99.20%	99.86%	99.86%	95.46%	62.27%	-	92.74%

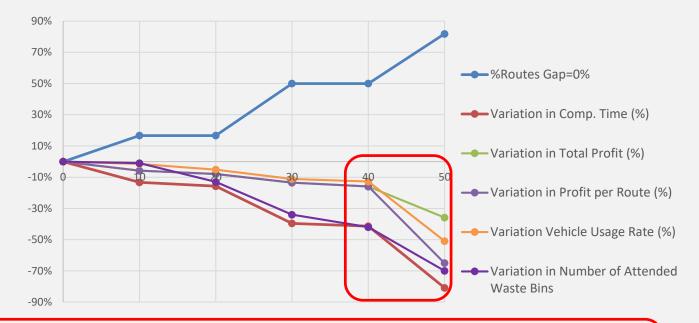
			M = 20	%								M = 30	%				
KPI	Day 1	Day 6	Day 13	Day 20	Day 25	Day 29	Total	Average	KPI	Day 1	Day 7	Day 13	Day 19	Day 25	Day 29	Total	Average
Profit (€)	253.9	166.1	193.8	220.6	137.8	80.3	1052.5	175.4	Profit (€)	238.8	178.2	196.3	199.8	172.6	3.0	988.8	164.8
Weight (kg)	3991.7	3657.5	3616.4	3995.9	3409.1	2754.1	21424.8	3570.8	Weight (kg)	3976.8	3488.2	3421.9	3998.4	3512.2	1677.0	20074.5	3345.7
Distance (km)	125.3	181.3	149.7	159.0	186.0	181.2	982.5	163.8	Distance (km)	139.0	153.1	128.8	180.0	161.0	156.2	918.0	153.0
Attended bins	82	90	114	104	110	100	600	100	Attended bins	75	70	82	95	87	43	452	75
L	114	98	137	132	135	114	730	122	L	96	78	96	129	98	53	550	92
Ratio (kg/km)	31.9	20.2	24.2	25.1	18.3	15.2	21.8	21.8	Ratio (kg/km)	28.6	22.8	26.6	22.2	21.8	10.7	21.9	21.9
Gap (%)	0.0	3.6	4.8	4.6	5.4	13.3	1.5	7	Gap (%)	0.0	5.5	0.0	4.2	0.0	75.0	-	15.3
Computational time (s)	883.7	16208.9	16204.7	16203.0	16202.9	16200.1	81903.3	13650.5	Computational time (s)	6717.8	16210.0	1547.8	16203.9	1846.7	16200.0	58726.3	9787.7
Vehicles used	1	1	1	1	1	1	6	1	Vehicles used	1	1	1	1	1	1	6	1
Vehicle usage rate (%)	99.79%	91.44%	90.41%	99.90%	85.23%	68.85%	-	89.27%	Vehicle usage rate (%)	99.42%	87.20%	85.55%	99.96%	87.80%	41.93%		83.64%

• M=0% presents both the highest profit and computational times.

• In general, as M increases, the amount of time to obtain an optimized solution decreases & the number of solutions with GAP 0% increases.

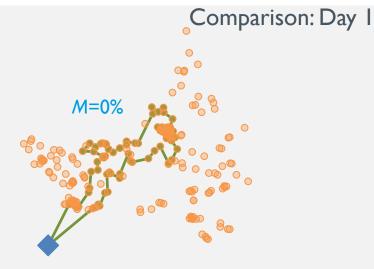
Optimization-based heuristic

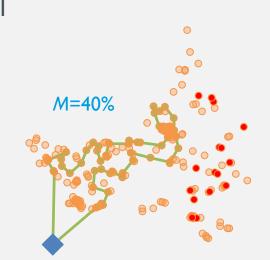
			M = 0%	6								M = 40	%				
KPI	Day 1	Day 6	Day 13	Day 20	Day 25	Day 30	Total	Average	KPI	Day 1	Day 7	Day 13	Day 19	Day 25	Day 29	Total	A
Profit (€)	253.1	186.9	224.4	223.9	147.9	106.7	1142.8	190.5	Profit (€)	230.5	142.8	213.2	196.5	167.2	10.1	960.3	
Weight (kg)	3999.6	3990.5	3953.6	3998.6	3781.5	2865.3	22589.2	3764.	Weight (kg)	3858.9	3092.0	3534.0	3929.3	3315.9	1965.6	19695.7	3
Distance (km)	126.8	192.2	151.2	155.9	211.3	165.5	1002.8	167.1	Distance (km)	136.1	150.9	122.5	176.7	147.7	176.6	910.5	
Attended bins	98	118	121	119	136	97	689	115	Attended bins	71	62	70	83	69	45	400	
L	226	226	226	226	226	226	1356	226	[L]	88	56	77	89	83	49	442	
Ratio (kg/km)	31.5	20.8	26.2	25.6	17.9	17.3	22.5	22.5	Ratio (kg/km)	28.4	20.5	28.8	22.2	22.4	11.1	21.6	
Gap (%)	2.8	7.3	6.3	9.4	13.4	10.6	-		Gap (%)	0.0	6.4	0.0	2.1	1.4	0.0	-	
computational time (s)	16201.2	16203.7	16200.4	16201.1	16204.4	16203.2	97213.9	16202	Computational time (s)	4415.6	16213.2	3847.6	16212.2	16203.6	96.4	56988.6	9
Vehicles used	1	1	1	1	1	1	6	1	Vehicles used	1	1	1	1	1	1	6	
ehicle Usage Rate (%)	99.99%	99.76%	98.84%	99.97%	94.54%	71.63%		94.12%	Vehicle usage rate (%)	96.47%	77.30%	88.35%	98.23%	82.90%	49.14%		8


					M =	= 50%							
KPI	Day 1	Day 6	Day 8	Day 13	Day 15	Day 17	Day 19	Day 21	Day 22	Day 25	Day 30	Total	Average
Profit (€)	206.1	69.2	29.2	152.1	3.8	44.6	3.2	41.4	-48.5	34.9	197.0	732.9	66.6
Weight (kg)	3882.3	1398.6	1504.3	3065.0	520.3	1959.0	559.2	1537.4	689.8	1822.8	3383.4	20321.9	1847.4
Distance (km)	162.7	63.7	113.7	139.0	45.6	141.5	49.9	104.6	114.0	138.2	124.3	1197.1	108.8
Attended bins	68	24	29	55	10	38	32	10	14	36	60	376	34
[L]	72	34	38	61	25	43	22	41	17	44	70	467	42
Ratio (kg/km)	23.9	22.0	13.2	22.1	11.4	13.8	11.2	14.7	6.0	13.2	27.2	17.0	17.0
Gap (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	4.0	0.0	0.0
Computational time (s)	197.2	3.7	123.3	1275.6	3.5	28.8	0.7	45.3	2.3	16228.3	16200.0	34108.8	3100.8
Vehicles used	1	1	1	1	1	1	1	1	1	1	1	11	1
Vehicle usage rate (%)	97.06%	34.96%	37.61%	76.62%	13.01%	48.97%	13.98%	38.43%	17.24%	45.57%	84.58%	17	46.19%

• However, by increasing M, less bins are visited, reducing the total profit and the vehicles usage, in turn increasing the total number of routes.

KPIs's Summary, as a variation reporting to the solution with M=0%




The **decrease in solution performance** from M=40% to M=50% in all indicators (except for GAP & Comp. time), is far greater than any of the previous increments of 10% in the value of M.

M=40% is the selected value for the parameter.

KPI	M=0%	M=40%
Profit (€)	253.1	230.5
Weight (kg)	3 999.6	3 858.9
Distance (km)	126.8	136.1
Attended bins	98	71
L	226	88
Ratio (kg/km)	31.5	28.4
Gap (%)	2.8	0
Comp. time (s)	16 201.2	4 415.6
Vehicles used	I	I
Vehicles usage rate (%)	99.9	96.5

In real-life settings, it would be preferable to design dynamic routes with current data, leading to the need of obtaining a solution quickly.

Results after 15 minutes run.

				Pr	ofit (€)	
M (%)	Weight (Kg)	Distance (km)	GAP(%)	CPU limit: 15 min	CPU limit: 4h	
0	-	-	-	-	253 (GAP 2,8%)	
10	3 992	125	1,64	254 1	254 (GAP 0%)	Best
20	3 992	125	1,29	254	254 (GAP 0%)	solution
30	3 977	139	2,00	239	239 (GAP 0%)	
40	3 859	136	2,5 I	231	231 (GAP 0%)	
50	3 882	163	0	206 📕	206 (GAP 0%)	

→ Better to use smaller values of M. However, there is the danger of not obtaining any solution.

Since the solutions for both M=10% and M=20% are the same, the selected value of M should be 20%.

To solve the SWCRP, a new solution approach was proposed: an optimization-based heuristic, dependent on the parameter M:

- The profit decreases as the value of M increases;
- The computational time required to obtain solutions decreases with the increase of M;
- The number of routes performed in the planning horizons is constant until M=40% but then, it seems to increases as M increases, which might imply additional operational costs.
- Not only the compromise between the value of M and the number of routes, but also the relatively grater decrease in the performance in KPIs for the solution of M=50% lead us to suggest that the best value for M is 40%.
- When CPU running time is small, the selected value for M should be 20%.

- Improving the optimization-based heuristic to consider not only the filllevels, but also the locations;
- Exploring the balance between routes, limiting shift time;
- Exploring Inventory Routing Problem models that allow a weekly profit maximization instead of daily.

THANK YOU FOR YOUR ATTENTION!

http://wsmartroute.tecnico.ulisboa.pt/

a.raquel.aguiar@tecnico.ulisboa.pt

Acknowledgments to the Portuguese National Science Foundation (FCT) and to the Massachusetts Institute of Technology Portugal (MIT Portugal) for:

Project MIT-EXPL/SUS/0132/2017

