

TWO HEURISTIC APPROACHES FOR SOLVING THE SMART WASTE COLLECTION ROUTING PROBLEM

Diana Jorge, Ana de Aguiar, Carolina Morais, Tânia Ramos, Ana Barbosa-Póvoa and António Pais Antunes

Tomar, 22nd July 2019

Outline

- 1. WSmartRoute Project
- 2. Problem definition
- 3. Case study
- 4. Optimization approach
- 5. Alternative solution approaches
- 6. Hybrid SA/LS metaheuristic
- 7. Hybrid SA/LS metaheuristic results
- 8. Shift duration and route balance
- 9. Shift duration and route balance Hybrid SA/LS results
- 10. Solutions comparison
- 11. Conclusions

WSmartRoute Project

New paradigm: smart waste management

The tool to be developed integrates:

- Technology to obtain **real-time data**
- Management concerns related to the routes

Estimation of: a decrease of companies' operational costs of around **35%** and an increase of their kg/km ratio of **40%**

http://wsmartroute.tecnico.ulisboa.pt/

static to dynamic routes

Problem definition [1/3]

vehicles visit partially full bins and empty bins.

Smart Collection: routes are dynamically defined to maximize operational profit and bins are visited taking into consideration fill levels transmitted by volumetric sensors placed inside the bins and accumulation rates (historical data).

"Blind collection": routes are static and

PROFIT = revenues (recyclable waste collected) – collection transportation costs

Tomar, 22nd July 2019 Two heuristic approaches for solving the Smart Waste Collection Routing Problem, 4

Problem definition [2/3]

Problem definition [3/3]

Decisions:

- In which days should route(s) be performed?
- Which waste bins should be visited?
- Which is the optimal visiting sequence for each vehicle in each day that route(s) need to be performed?

Objectives:

 Maximization of the profit: revenues obtained through recyclable waste collected – collection transportation costs

Constraints:

- Vehicles capacity
- Bins' capacity

Case study [1/2]

Case-study from a Portuguese company responsible for the recyclable waste (glass, paper/cardboard and plastic/metal) collection at 14 municipalities in Portugal.

Paper/cardboard: 26 different static routes performed periodically.

Period: 3rd January 2013 to 2nd February 2013 (30 days)

Routes: route 6 - 68 bins – collected 2 times in the period, route 11 - 74 bins - collected 3 times in the period and route 13 - 84 bins – collected 5 times in the period (total of 226 bins)

Two heuristic approaches for solving the Smart Waste Collection Routing Problem, 7

Case study [2/2]

Date	10/01	10/01			
Route	Route 6	Route 13	⁻ KPI	Total	Average
КРІ	Day 8	Day 8	Profit (€)	636.3	63.6
Profit (€)	-73.2	112.1	– Weight (kg)	22154.3	2215.4
Weight (kg)	1420.4	2564.1	Distance (km)	1468.4	146.8
Distance (km)	208.2	131.5	Attended bins	778	78
Attended bins	68	84	 Empty visited bins 	81	8
Empty visited bins	26	7	Ratio (kg/km)	15.1	15.1
Ratio (kg/km)	6.8	19.5	Vehicles used	10	1
Vehicles used	1	1	– Vehicles usage rate (%)	-	55.4
Vehicles usage rate (%)	35.5	64.1			

673 min 630min

66% of the collected waste bins had a fill-level equal or lower than 50%

Optimization approach [1/2]

- **Heuristic** to decide in which days route(s) should be performed: if any bin is expected to overflow at a given day, route(s) should be performed on that day.
- VRP with Profit (VRPP) mathematical model: solved, in the morning, after receiving sensors' information on the bins' fill-level, when there is at least one waste bin expected to overflow.

Optimization approach [2/2]

KPI	Day 1	Day 6	Day 13	Day 20	Day 25	Day 30	Total	Average
Profit (€)	253.1	186.9	224.4	223.9	147.9	106.7	1142.8	190.5
Weight (kg)	3999.6	3990.5	3953.6	3998.6	3781.5	2865.3	22589.2	3764.9
Distance (km)	126.8	192.2	151.2	155.9	211.3	165.5	1002.8	167.1
Attended bins	98	118	121	119	136	97	689	115
L	226	226	226	226	226	226	1356	226
Ratio (kg/km)	31.5	20.8	26.2	25.6	17.9	17.3	22.5	22.5
Gap (%)	2.8	7.3	6.3	9.4	13.4	10.6	-	-
Computational time (s)	16201.2	16203.7	16200.4	16201.1	16204.4	16203.2	97213.9	16202.3
Vehicles used	1	1	1	1	1	1	6	1
Vehicle Usage Rate (%)	99.99%	99.76%	98.84%	99.97%	94.54%	71.63%	-	94.12%
	693 min	898 min	847 min	844 min	1018 mir	750 min		

> 8h (480mins)

Low computational performance and low solution quality (significant gaps).

Alternative solution approaches

Two **heuristic approaches** to better solve the SWCRP, improving the solution performance of the VRPP model.

Optimization-based heuristic

Hybrid simulated-annealing/local-search metaheuristic

Hybrid SA/LS metaheuristic

Hybrid SA/LS metaheuristic results [1/2]

КРІ	Day 1	Day 7	Day 13	Day 19	Day 26	Total	Average (/route)
Profit (€)	242.36	134.35	185.94	157.83	213.66	934.14	155.69
Weight (kg)	5193.14	2974.61	2817.26	3427.66	3997.03	18409.70	3068.28
Distance (km)	250.79	148.14	193.93	167.70	166.03	926.59	154.43
Attended bins	144	92	129	120	115	600	100
Bins considered	226	226	226	226	226	1130	188.33
Ratio (kg/km)	20.71	20.08	14.53	20.45	24.07	16.66	16.66
Routes time (min)	445+656	687	945	858	831	4422	737
Computational time (s)	2130	1725	2081	2058	1998	9990	1665
Vehicles used	2	1	1	1	1	6	1
Vehicle usage rate (%)	64.91	74.37	70.43	85.62	99.93	-	65.88

Hybrid SA/LS metaheuristic results [2/2]

Shift duration and route balance

Additional constraints:

- Shift duration: 8h shifts
- Route balance: routes performed on the same day should be similar in terms of duration

Shift duration and route balance results – Hybrid SA/LS results [1/2]

КРІ	Day 1	Day 7	Day 13	Day 19	Day 26	Total	Average (/route)
Profit (€)	202.74	98.69	153.21	91.82	174.91	721.37	80.15
Weight (kg)	4687.94	2515.65	4175.55	3633.57	3865.35	18878.06	2097.56
Distance (km)	242.41	140.20	243.27	253.16	192.85	1071.89	119.10
Attended bins	113	54	118	116	105	506	56
Bins considered	226	226	226	226	226	1130	226
Ratio (kg/km)	19.34	17.94	17.16	14.35	20.05	9.87	9.87
Routes time (min)	466+466	484	480+479	481+484	407+405	4152	461
Computational time (s)	2164	1366	1898	1845	1525	8798	977.56
Vehicles used	2	1	2	2	2	9	1
Vehicle usage rate (%)	58.60	62.89	52.19	45.42	48.32	-	29.71

Shift duration and route balance results – Hybrid SA/LS results [2/2]

Solutions comparison

Solution	Current		Optimization		Hybrid SA/LS		Hybrid SA/LS + shift duration + route balance	
КРІ	Total	Average	Total	Average	Total	Average	Total	Average
Profit (€)	636.3	63.6	1142.8	190.5	934.14	155.69	721.4	80.2 🦊
Weight (kg)	22154.3	2215.4	22589.2	3764.9	18409. 0	aprox. 18.3% lower 09		^r 097.6
Distance (km)	1468.4	146.8	1002.8	167.1	926.59	154.43	1071.9	119.1
Attended bins	778	78	689	115	600	100	506	56
Bins considered	2260	226	1356	226	1130	188.33	1130	226
Ratio (kg/km)	15.1	15.1	22.5	22.5	16.66	16.66	9.9	9.9
Routes time (min)	6239	624	5050	842	4422	aprox. 10 times lower 61		r 61
Computational time (s)	-	-	97213.9	16202.3	9990	1665 📕	8798	977.6 📕
Vehicles used	10	1	6	1	6	1	9	1
Vehicle usage rate (%)	-	55.4	-	94.1	-	65.88	-	29.7

Conclusions

- Both optimization and hybrid SA/LS approaches are more efficient when defining more profitable routing plans than what happens in the current situation.
- The hybrid SA/LS metaheuristic is much faster than the optimization approach. However, the profit is a little lower when SA/LS metaheuristic is utilized.
- When shift duration and route balance constraints are introduced, the SA/LS metaheuristic proved to be efficient in dealing with these additional constraints.
- After introducing these constraints, the solution is still more profitable than the current situation performed by the company.

THANK YOU FOR YOUR ATTENTION

Research Project MIT-EXPL/SUS/0132/2017

Two heuristic approaches for solving the Smart Waste Collection Routing Problem

Diana Jorge | dianajorge@uc.pt Ana de Aguiar | raquel.penaguiar@gmail.com Carolina Morais | carolina.morais@tecnico.ulisboa.pt Tânia Ramos | tania.p.ramos@tecnico.ulisboa.pt Ana Barbosa-Póvoa | apovoa@tecnico.ulisboa.pt António Pais Antunes | antunes@dec.uc.pt

